不同類型颱風之定量降雨機率預報分析 與區域校驗結果

Hsu-Feng TENG¹, Cheng-Shang LEE^{1,2}, Chin-Teng WENG¹ 鄧旭峰¹、李清勝^{1,2}、翁進登¹

¹Department of Atmospheric Sciences, National Taiwan University

²Taiwan Typhoon and Flood Research Institute, National Applied Research Laboratories

Outline

- Introduction
- PQPF and Verification Methods
- Verification Results
- Future Works
- Summary

Date: 2015.09.17

Introduction

- A typhoon rainfall climatology model and some deterministic forecasting models (MM5, WRF) were developed and used many years ago.
- Although the topographical lifting of typhoon circulation (topography-locking effect) could be mainly controlled by the climatology model or single deterministic model, they might fail to provide reasonable rainfall estimates for typhoons with special convective features.

Fannapi (2010)

Observation

Inner rainband re-organized after the typhoon center moved across the mountain range causing serious flooding in Kaohsiung area.

(Lee et al., 2006; 2013)

Introduction

- A typhoon rainfall climatology m models (MM5, WRF) were develo
- Although the topographical lifting locking effect) could be mainly cor deterministic model, they might fai for typhoons with special convective

Fannapi (2010)

Observation

Inner rainband re-organized after the typhoon center moved across the mountain range causing serious flooding in Kaohsiung area.

(Lee et al., 2006; 2013)

Ensemble mean

2013 typhoon Soulik Initial time: 2013071100Z

Ensemble mean

24 hr accumulated rainfall

MEAN SO6 mm SE2 mm

2013 typhoon Soulik Initial time: 2013071100Z

Probability Forecast?

- Ensemble mean can not show the uncertainty
- To quantify the uncertainty of the ensemble precipitation forecast, the probabilistic quantitative precipitation forecast (PQPF) is developed.

Probabilistic Quantitative Precipitation Forecast

24 hr accumulated rainfall

2013 typhoon Soulik Initial time: 2013071100Z

≥ 10mm

≥ 25mm

≥ 50mm

≥ 130mm

≥ 200mm

≥ 350mm

Observation

PQPF

Reliability diagram (RD)

 plots the observed frequency against the forecast probability

Relative operating characteristic (RC)

- plots hit rate and false alarm rate
- RC area ≥ 0.7 : well skill

Brier score (BrS)

Measures the mean squared probability error

$$- BrS = \frac{1}{n} \sum_{j=1}^{n} (p_j - o_j)^2$$

Rank probability score (RPS)

 Measures the sum of squared differences in cumulative probability space for a multi-category probabilistic forecast

$$- RPS = \frac{1}{M-1} \sum_{m=1}^{M} \left(\sum_{j=1}^{m} p_f(j) - \sum_{j=1}^{m} p_o(j) \right)^2$$

Verification

Interpolate ENS values to 499 raingauge station

	Year	Name	Track
Varification Describe	2014	FUNG-WONG	
Verification Results	2014	MATMO	\mathbf{W}
	2014	HAGIBIS	
• Targets of analysis		FITOW	\mathbf{W}
		USAGI	\mathbf{W}
 Different tracks of typhoon 	2013	KONG-REY	N
 Different sizes of typhoon 	2013	TRAMI	\mathbf{W}
	2013	CIMARON	
 Specific regions in specific period 	2013	SOULIK	\mathbf{W}
 Different years 	2012	JELAWAT	
·	2012	TEMBIN	
 Different intensities of typhoon 	2012	KAI-TAK	
 Different motion speeds of typhoon 		HAIKUI	
2 month motion speeds or typnoon	2012	SAOLA	\mathbf{W}
	2012	DOKSURI	
• The results of verification are significantly	2012	TALIM	N
affected by the track and size of typhoon.	2011	NANMADOL	\mathbf{W}
militaria of the tractional of the proof.	2011	MUIFA	
	2011	MEARI	
	2011	SONGDA	

- Overall, 2011-2014
- Rainfall in 24 hr
- Perform well (?!)
 - RD: overestimate for high probability value
 - RC area > 0.7
 - BrS: small

- Analysis of different typhoon tracks
 - Westward: track 1-5 in CWB
 - Northward: track 6-9 in CWB
- The performance for the westward typhoon is better than the northward typhoon, because the track uncertainty of the northward typhoon is more significant.

- Analysis of different typhoon sizes
 - Large : radius of 15 m/s \ge 200km
 - Small: radius of 15 m/s < 200 km
- The performance for the large typhoons is better than the small typhoons, because the effect of the track error will be emphasized in the small typhoons.

依地形、行政區將臺灣地區分為17個平地校驗區、9個山地校驗區, 共26個校驗區。

- Analyze the difference between the city and mountain regions during the major affecting period.
- Both are overestimated for high probability value in high rainfall threshold.

Remote Rainfall

2011 Nanmadol

2013 Kong-rey

2013 Trami

remote rainfall in the event of the typhoon tends to be significantly underestimated in this ensemble system.

Quantitative Precipitation Forecasts Probability (QPFP) based on Typhoon Track

Summary

- This study uses Taiwan cooperative precipitation ensemble forecast experiment (TAPEX) data to analyze the probabilistic quantitative precipitation forecast (PQPF) and the probabilistic verification.
- Four methods of verification, including the reliability diagram (RD), relative operating characteristic (RC), Brier score (BrS), and ranked probability score (RPS), are used to verify the probabilistic rainfall forecast.
- The PQPF of the typhoon with smaller radius during 2011–2014 is usually overestimated for high probability value.
- The averaged error of PQPF for the northward typhoon is larger than the westward typhoon, because the track uncertainty of the northward typhoon is more significant.
- The main future study challenges in this ensemble system are the significant underestimation of the **remote rainfall** and the **consistent ensemble tracks shifting**.

Summary

- This study uses Taiwan cooperative precipitation ensemble forecast experiment (TAPEX) data to analyze the probabilistic quantitative precipitation forecast (PQPF) and the probabilistic verification.
- Four methods of verification, including the reliability diagram (RD), relative operating characteristic (RC), Brier score (BrS), and ranked probability score (RPS), are used to verify the probabilistic rainfall forecast.
- The PQPF of the typhoon with smaller radius during 2011–2014 is usually overestimated for high probability value.
- The averaged error of PQPF for the northward typhoon is larger than the westward typhoon, because the track uncertainty of the northward typhoon is more significant.
- The main future study challenges in this ensemble system are the significant underestimation of the remote rainfall and the consistent ensemble tracks shifting.

 ~The End~

Thank you for your attention!

- Analysis of different typhoon intensity
 - strong : Cat 3, Cat 4, and Cat 5
 - weak: TS, Cat 1, and Cat 2
- The performance is no significant difference between the strong typhoons and the weak typhoons.

